

Microturbines: Activities within the Office of Distributed Energy Resources

Debbie Haught

Office of Power Technologies U.S. Department of Energy

Microturbine and Industrial Gas Turbine Peer Review Meeting March 12, 2002

Microturbines Today

- Microturbines are viable now for distributed energy applications
 - Competitive costs, performance, emissions in selected applications
 - Ideally suited to alternate fuels, CHP applications, remote siting
- Microturbines have significant expanded market potential with technology advances
 - Competitive Efficiency at < 1 MW size
 - Potential for lowest first cost
 - Lowest emissions and broadest fuel specification

Potential for Best in Class

- Class boundaries 30 kW to 500 kW
 - Emissions potential includes < 5 ppm NOx
 - Direct use of exhaust gas for CHP
 - Fuel flexibility
 - Potential for highest efficiency
 - Lowest manufacturing cost when fully developed (low number of moving parts)
 - Lowest installed cost potential (light weight, quiet, etc.)
- These are high reward possibilities requiring high risk investment which provide public benefits that the market place currently cannot fully value.
- Ideal opportunity for public/private partnership.

Impact of Technology on **Microturbine Markets**

Sensitivity Analysis on Microturbine O&M Cost

%Increase in Microturbine Market Opportunity at Year 5

Data from proprietary market sudy based on customer interviews

Sensitivity Analysis on Microturbine Efficiency

% Increase in Microturbine Market Opportunity at Year 5 Data from proprietary market study based on customer interviews.

Non-Technical Issues That Will Affect Success of Microturbines

- Rate of industry deregulation
- Regulatory framework and incentives established
- Electric utility acceptance or resistance
- Financial incentives for all players in value chain
- Adequate sales and service support
- Emissions regulations
- Installation and interconnection requirements/costs
- Cost of establishing manufacturing capability

DOE DER Microturbine Activities

- Baseline Microturbine Testing
 - University of California-Irvine (UCI) & Southern California Edison (SCE)
 - National Rural Electric Cooperative Association (NRECA)
- Advanced Microturbine Technology Program
 - Program planning with Industry
 - Competitive solicitation
- Supporting Materials Technology Projects
- Microturbine Integration Research,
 Development and Testing (funded by other DER programs)

Baseline Microturbine Evaluation Program

- \$2.9+ Million Program begun by Southern CA Edison and University of CA-Irvine in 1996
- Funded by: SCE, DOE, CEC, EPRI, CERA, CERTS
- Project Goal:
 - Determine the availability, operability, reliability and performance characteristics of commercially available microturbines
- Project Objectives
 - Compare manufacturer claims to actual experiences from installation, operation and testing of units
 - Assess microturbine performance against SCAQMD emissions rule and IEEE power quality standards

Microturbine Field Tests at U.S. Rural Electric Cooperatives

- Project Partners: National Rural Electric Cooperative Assn. (NRECA) Central Research Network (CRN), ORNL, EPRI
- Conduct nationwide field tests of microturbines from several different manufacturers
- Collect application and operation data on microturbine installation and performance
- Assess microturbine feasibility and reliability in diverse applications and environments
- Benchmark future improvements in microturbine performance, operation, and maintenance

Industry/DOE Collaborated to Establish Advanced Microturbine Goals

- I ATES OF THE STATE OF THE STAT
- Modeled after National Academy of Science (NAS) recognized DOE Advanced Turbine System (ATS) program
- Goals set in DOE/Industry Workshop (Nov 1998) and Program Plans (Dec 1999)
 - 6 cost-shared awards in July 2000
- Goals for superior 2007 microturbine product
 - High electrical efficiency ⇒ 40%
 - Low environmental impact ⇒NOx < 7 ppm
 - Durable and affordable ⇒11,000hr MTBO &
 <\$500/kW
 - Fuel flexible ⇒Natural gas, biofuels, propane, waste fuels & diesel

Advanced Microturbine Program

- Six year program (FY 2000 2006), \$60+ million Govt. investment
- Program to include:
 - Competitive solicitation(s) for engine conceptual design, development, and demonstration; component, sub-sub-system development
 - Competitive solicitation(s) for technology base in areas such as materials, combustion, sensors and controls, etc
 - Technology evaluations and demonstrations
- End-use applications open to include stationary power applications in industrial, commercial, and institutional sectors

Microturbine Program RD&D Plan Funding

From the Advanced Microturbine Systems Program Plan 2000-2006

Advanced Microturbine Program Funding

Advanced Microturbine Solicitation

- Solicitation for up to 5 year projects \$10,000,000 Govt share max
- Proposers could propose on one or more tasks start at any point
 - Task 1 Concept research and development, component development and testing
 - Task 2 Subsystem component design and development
 - Task 3 Microturbine modification for integration of advanced technologies
 - Task 4 Microturbine system assembly and testing
 - Task 5 Pre-commercial demonstration (up to 8,000 hours)
- Industry cost share:
 - 30% Tasks 1 &2
 - 45% Tasks 3 &4
 - 60% Task 5

Solicitation Technical Evaluation Criteria

- Description of Proposed Microturbine System (50 points)
- Research, Development and Test (RD&T) Plan (20 points)
- Teams Capabilities, Personnel, and Facilities (30 Points)
 - Applicants expected to utilize a variety of team such as microturbine manufacturer (one or more required), suppliers and vendors, Universities, Research organizations, National Laboratories, End users

Advanced Microturbine Projects

2000

- ▶ 17-30% Efficiency (LHV*)
- Double digit ppm NO_x

FY00 - 6 Awards

- Ingersoll-Rand
- **UTC**
- GE
- Honeywell
- Capstone
- Solar

2007

- ▶ 40% Efficiency (LHV*)
- Single digit ppm NO_x

Advanced Materials for Microturbines

- Advanced materials are a key enabling technology for advanced microturbines:
 - Monolithic ceramics: hot section components, combustor liners
 - Ceramic composites: combustor liners
 - High temperature metal foils: recuperators
 - High conductivity carbon foam: power electronics
- A materials program to support microturbines is underway and managed by ORNL
 - Program designed to meet needs of advanced microturbine developers to develop materials technology base
 - "Peer Review" held June 2001

Examples of Program Coordination

- External Coordination
 - States (CEC, NYSERDA)
 - CEC EPAG solicitation
 - NYSERDA solicitations
 - EPRI
 - Natural Resources Canada (CANMET)
- Internal DOE
 - Industrial Gas Turbines (materials and low emissions)
 - Integrated Energy Systems (DER)
 - CHP (DER)
 - Interconnection (DER)
 - Industrial Distributed Generation (DER)
 - Energy Storage (DER)
 - Micro-Grid/Integration (DER/CERTS)
 - Fuel cell hybrid systems (FE)
 - Federal sites (FEMP)

DOE/Industry Microturbine Partnership

- Capturing 30 kW to 500 kW microturbine attributes: Low emissions, high efficiency, fuel flexibility, lowest manufacturing cost potential and lowest installed cost potential
- Achieving goals great public benefit
 - Reduces transmission line demand in distributed generation applications, particularly in non-attainment areas
 - Expands customer choice for meeting power/heating/cooling (CHP), reliability, and security needs
 - Expands US market fit, reducing customer cost through competition with current options
 - Reduces NOx emissions
 - Reduces greenhouse gas emissions and conserves natural resources by converting >70% fuel energy with CHP
 - A critical element as we transition toward a hydrogen economy.

For Additional Information

www.eren.doe.gov/der

- Debbie Haught, 202.586.2211, debbie.haught@ee.doe.gov
- Steve Waslo 630.252.2143, stephen.waslo@ch.doe.gov
- Dave Stinton 423.574.4556, stintondp@ornl.gov